
Software Test Appliance
Techniques (STAT) for Software ()

Systems

Ron CraftRon Craft
Craft Designs, Inc May 2011

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Software Test Appliance Techniques (STAT) for Software Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Craft Designs, Inc,700 Boulevard South Suite 107,Huntsville,AL,35802

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT
The dependencies in complex software systems are stretching industry software test capabilities such that
schedules and budgets are constantly being compromised at the risk of producing software with more
defects and reliability issues. STAT technologies are being integrating within our production code to
facilitate improved testability and reliability. Modeled from techniques utilized in hardware systems
commonly titled Built-in Test (BIT), STAT is used to develop applications that support testability without
sched le compromising schedule and budget. The authors have found that STAT supports the development
and deployment of robust software applications. ? Non-intrusive test techniques ? Improved reliability ?
Supports test automation ? Improves integration success

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The dependencies in complex software systems are stretching industry
software test capabilities such that schedules and budgets are constantly
being compromised at the risk of producing software with more defects
and reliability issues. STAT technologies are being integrating within our
production code to facilitate improved testability and reliability. Modeled
from techniques utilized in hardware systems commonly titled Built-in Test
(BIT), STAT is used to develop applications that support testability without
compromising sched le and b dget The a thors ha e fo nd that STATcompromising schedule and budget. The authors have found that STAT
supports the development and deployment of robust software applications.

• Non-intrusive test techniquesq
• Improved reliability
• Supports test automation
• Improves integration success

CMMI-ML3

The purpose of this briefing is to provide an understanding ofThe purpose of this briefing is to provide an understanding of
what a Software Test Appliance is and how it can be applied to
building robust and reliable Software Applications.

Background• Background
• Example Software Systems
• Non-intrusive test techniquesq
• Improved reliability
• Supports test automation

I i t ti• Improves integration success

CMMI-ML3

• 25+ years in Industry
• Emphasis on Software Engineering
• Embedded systems for Medical applicationsy pp
• Embedded systems for Aircraft avionics.
• Numerical models for University Research
• High speed measurement toolsHigh speed measurement tools

CMMI-ML3

• Mission Planning Software
• Flight Performance Planning Models
• Embedded Flight Performance Models for

Mission Execution

CMMI-ML3

– Flight Performance Models - Digital models of aircraft performance
flight capabilities and limitations

– Developed by combining flight-test and engineering data with
standard mathematical models (equations) of aircraft performancestandard mathematical models (equations) of aircraft performance

– Rotary Aircraft - Performance Planning Cards (PPC)
– Fixed Wing Aircraft – Take Off and Landing Data (TOLD)
– Desktop and Onboard Embedded Applicationsp pp

– Platforms
• Apache
• Blackhawk• Blackhawk
• Chinook
• Kiowa warrior
• JCA• JCA
• Sherpa
• Citation

CMMI-ML3

– Flight Performance
Model integrated g
with desktop
applications

• Integrated
P f dPerformance and
Aircraft Configuration
(IPAC)

• Portable Flight g
Planning Software
(PFPS)

• Aviation/Joint Mission
Planning SystemPlanning System
(AMPS/JMPS)

• Falconview
• Operators Manual

ChartsCharts

– Embedded Flight Performance Models (EFPM) are being inserted
into fixed wing and rotary wing cockpits
Enables onboard flight performance and mission planning– Enables onboard flight performance and mission planning

– Accurate and consistent with desktop applications
– Very fast execution, very small memory requirements
– Efficient numerical methods to create faster EFPMsEfficient numerical methods to create faster EFPMs

• Non-dimensional data
• Higher-order interpolation
• Pre-processingp g

– Currently have EFPM onboard
• OH-58D
• UH-60M
• CH-47F
• MH-47G
• MH-60K/L/M

CMMI-ML3

Today’s systems are becoming systems of Software Systems

Sensor Flight Control Weapon

MUX BUS

Systems System System

MUX BUS

Audio
System

Display
System

CMMI-ML3

• Standardized interfaces
• Abstracted capabilitiesAbstracted capabilities
• Functions

– Producer
– Consumer
– Mediators

• Coupling Complexity• Coupling Complexity
– Data
– Control

CMMI-ML3

• Data coupling - The dependence of a
software component on data not exclusively p y
under the control of that software
component. (DO-178B)
– Define the behavior for the input domain
– Bounds check the component

O t id th b d• Outside the bounds
• At the bounds
• The entire domain

CMMI-ML3

• Control coupling - The manner or degree by
which one software component influences the p
execution of another software component.
(DO-178B)
– Requirements must fully specify switches
– Test must exercise each switch

R d l li d– Reduce control coupling, reduce test cases

CMMI-ML3

• Prevent bugs in software and hardwarePrevent bugs in software and hardware
before deployment.

• Discover symptoms of bugs before theyDiscover symptoms of bugs before they
affect safety or functionality of systems.

• Provide diagnostic information on detected• Provide diagnostic information on detected
bugs.

CMMI-ML3

Goals of testing listed above plus:
• Non-intrusive verification of proper functionality

of systems for operational system status.of systems for operational system status.
• Non-intrusive data collection to support the

verification of required operation.
• Detection of changes in SW configurations and• Detection of changes in SW configurations and

operation during power up and normal
operations.

• Provide a mechanism to detect changes in dataProvide a mechanism to detect changes in data
• Provide a mechanism to support developmental

unit test
Provide a mechanism to support verification• Provide a mechanism to support verification,
validation, and qualification test

CMMI-ML3

Techniques designed for hardware
systems can be adapted for software
systems
• Software Built-in Test (SW-BIT)()
• Interface Logger (SW-INF)

CMMI-ML3

• Startup BIT

– Evaluation of key functions and capabilities before
transitioning to operational system statustransitioning to operational system status.

• Continuous BIT• Continuous BIT

– Evaluation of selected capabilities during
operational system status. p y

CMMI-ML3

Initiated BIT• Initiated BIT

– Detailed BIT used to provide diagnostic information
while temporarily transitioned to non-operational p y p
system status.

• Maintenance BIT

– Exhaustive BIT designed to operate with a
maintenance interface and provide “peek and poke”
capabilities into system during both operational and
non-operational system status.

CMMI-ML3

• Usually performed by the Boot Loader software.
• Evaluates memory locations using Destructive Stuck-

on-1/Stuck-on-0 tests (memory is erased before
download operations start).

• Downloads and verifies the operational code using
sequence checking and check summing of the
operational codeoperational code.

• Activates all interfaces and verifies that they are
operational by receiving/sending heartbeat
messages.

• Activates operational code and verifies when it is
running.

CMMI-ML3

g

• Foreground Tests:
Inputs:– Inputs:

• Checksum, parity checks, time tags, sequence numbers, and
heartbeat checks of digital and discrete inputs.

• Voltage, current, frequency checks of analog and power inputs.Voltage, current, frequency checks of analog and power inputs.
– Processors
– Software

• Background Tests:• Background Tests:
– Inputs:

• Perform loopback tests of digital, discrete, and analog input.
• Non-destructive Stuck-on-1/Stuck-on-0 tests on interface• Non-destructive Stuck-on-1/Stuck-on-0 tests on interface

buffers.
– Memory:

• Non-destructive Stuck-on-1/Stuck-on-0 tests of all memory

CMMI-ML3

y
locations.

• Detailed evaluations that may replace Startup BIT• Detailed evaluations that may replace Startup BIT
when adequate startup testing is too time-
consuming.

• May be performed by operational code, however,
IBIT is not performed during normal operation.

• Supports maintenance by:Supports maintenance by:
– Identifying where problems exist as well as problem types.
– Providing an interface for maintenance software to access

memory locations etcmemory locations, etc.
– Performing download evaluations.

CMMI-ML3

• Development Platform:
– Provides access to selected memory locations,

by setting of breakpoints, etc., used to evaluate
the software and/or hardware.

– Sets up emulated/simulated inputs and stimuli.
• Repair Operations:

– Downloads new software via maintenance
interfaces.
Identifies sources of problems for repair– Identifies sources of problems for repair
operations on LRU/SRUs.

– Evaluates repair status.

CMMI-ML3

• Operational Evaluations Only – Does not include startup,Operational Evaluations Only Does not include startup,
development and V&V evaluations/tests.

• Examples of Operational Evaluations:
Data Analysis:– Data Analysis:

• Perform sanity checks on input data.
• Prevent run-time errors by insuring incorrect and out-of-

bounds data are not usedbounds data are not used.
– Stack Overflow – Provide software checks to insure

against and report conditions where stacks overflow
(especially necessary in “C” C++ and other languages)(especially necessary in C , C++, and other languages).

– Exception Handling – Provide exception handling
capabilities in the code development.

CMMI-ML3

• Startup SW-BIT checks:Startup SW BIT checks:
– Presence of data sources
– Integrity of data sources (CRC)g y ()
– Use of correct SW computational components (compare

computed results against pre-computed expected
results)results)

– Expected behaviors from selected functional SW
componentsp

– Correct model instantiation (software components,
unique parameters, and specific data sources)

CMMI-ML3

• Continuous SW-BIT checks:Continuous SW BIT checks:
– Integrity of data sources (CRC)

Use of calculation status (NaN & status flags)– Use of calculation status (NaN & status flags)
– Memory leaks

Buffer overruns– Buffer overruns
– Program flow by choosing test cases that will

to maximize code coverageto maximize code coverage

CMMI-ML3

• Initiated SW-BIT supports regressionInitiated SW BIT supports regression
testing:
– SW tests that run during startup and under g p

normal operation still return expected results
– Test case stimulus chosen to maximize code

coverage
• Maintenance SW-BIT

– Test stubs
– Upgrade verification/status

CMMI-ML3

• Checks for expected:Checks for expected:
– Computational results

Control Flow– Control Flow
– Required behaviors

Hardware and software system configurations– Hardware and software system configurations
• Flags non-expected results
• Supports developmental test
• Logs test case stimulus for analysis

CMMI-ML3

g y

• Include in operational requirementsInclude in operational requirements
• Test completely to avoid false failures
• Save all input informationSave all input information
• Save all output information
• Save needed state informationSave needed state information
• Strategically capture the call trace
• Develop parsing tools to support analysis• Develop parsing tools to support analysis
• Identify interfaces where data can easily

be gathered without intrusion
CMMI-ML3

be gathered without intrusion.

• Pick a simple technique that will not be accidently enabled

//
// See if Test Appliance is ready to be enabled
//

//does the user want to enable logging?
fopen_s(&logfile, "c:\\{5432testapp-papalog123} \

\\eg45fhtymightbeagoodname.txt", "r");
if (logfile != NULL)
{
logging = true;logging true;
fclose(logfile);

}

CMMI-ML3

//
// Did we find a mode to calculate
//

if(i < pModel >cModes)if(i < pModel->cModes)
{
if (logging == true)
{
// Write State info and input info.
// Flush the file
// Close the File

}

ierr = pMyMode->prep and calc(); // Calculate the modeierr = pMyMode >prep_and_calc(); // Calculate the mode

if (logging == true)
{
// Write the output info and state info.
//// flush the file
// close the file

}
}

CMMI-ML3

CMMI-ML3

log Parser I

[04/18/11] - 16: 20: 56 7979: I PAC D epartUI •
[04/18/11]-16:20:59 7983: I PAC Arrival
s ·· lnputs

!··· 421 Anti-1 ce: 0. 000000
i-··· 1714 Blade Erosion Kit: 0.000000
j 8269 Cabin Doors: 0.000000
j 8279 Cockpit D oars: 0. 000000
J-··· 1563 CONFIGURATION: 0.000000
j 8280 Crew Chief/Gunner Windows: 0
j 8267 E CS: 0. 000000
J 8270 E CS State: 0. 000000
j 8263 EIBF: 0.000000
! ... 8264 EIBF Bypass Doors: 0.000000
j 1772 Engine *f1 Tor que Factor: 1. 00
j 1773 Engine *f2 Tor que Factor: 1. 00(
j 8383 Engine Type: 1. 000000
j 8273 Fixed/Additional Download Cha
j 8756 Fixed/Additional Drag: 0.00000(
j 1138 Free Air Temperature: 35. 00000
J ·· 744 Heater: 0.000000
i···· 12951GE Hover Height: 10.000000
j ·· 82721nternai/Additional Load Weight
j 82651R Suppression 1.000000
j 827 4 J ettisonable Stares Download C
j 8023 J ettisonable Stares Drag: 0. 0001
j 736 Jettisonable Stores Weight: 0.00(
J 8288 Max Structural Weight: 22000.0
j 8268 OBOGS: 0.000000
j 8271 OBOGS State: 0.000000
j 1715 0 per ating Limit - DE: 2. 000000
j 1560 0 per ating Limit - S E: 3. 000000

j !~~~ ~~~~a-ti~gr~~~g,ht~ ~.~~032333~
~ ~

Log File:

I C: \ {mylogtl log Parser

EJ·· CORE::Min_Airspeed:
J···· IP: 1108

I±J·· Input Array
lB·· Accessories Array
I±J·· Core Values
lB·· Core Statuses

I±J·· CORE::Convert_Airspeed:
lB·· CORE::Min_Airspeed:
liJ .. CORE::Convert_Airspeed:

·· Outputs
! 730 Gross Weight: 1441 2. 000000
j 855 M.6X ALLOWABLE GWT IGE: 22000.(

! 856 M.6X ALLOWABLE GWT 0 G E: 20331 .
i-··· 1718 M.6X HOVER HEIGHT: 1000.000000
! 1785 M.6X TORQUE AVAILABLE (Dual): 1 (
! 1788 M.6X TORQUE AVAILABLE (S ingle *f.
J ... 1789 M.6X TORQUE AVAILABLE (Single *f:
j .. 8307 MIN SE - lAS- W/0 STORES: 13.00(
! ... 8308 MIN SE -lAS- W/STORES: 13.00001
i-··· 1324 PREDICTED HOVER TORQUE (DE):
J 1804 PREDICTED HOVER TORQUE (SE*f
J 1805 PREDICTED HOVER TORQUE (SE#
j 1790 Total Download Change: 0. 000000
j 581 Total Flat Plate Drag: 0.000000
j 11 80 TR (Dual): 1.000000
j 1791 T R (Single *f1): 1. 000000
! 1792 T R (Single *f2): 1. 000000

·· Messages
I PAC Arrival
. Torque Required (111 .0%) exceeds T orquo

;~.$;1:_::. ~-~04 £

Log File:

r-Ic-: \-::"{-my-:-lo-g-tr~ig-ge-r~}\-sa_m_p7"1e7"L-og-;:F7ile-:. t::::xt:-1 GJ
Delete Log Parse File I

Enable
Logging

CD/ Software Engineering S~c~alist
WWJ.v.crafldesJJlns.net

Note: 3 decisions 6 possible outcomesNote: 3 decisions, 6 possible outcomes

CMMI-ML3

• Provides call trace
P fl d l• Parser can flags non-expected results

• Supports developmental test
• Logs test case stimulus for analysis
• Captured data can be fed back into• Captured data can be fed back into

application as a stimulus or regression
• Provides tangible test results

CMMI-ML3

